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The present paper proposes an exact modelling and modal analysis method for
non-uniform, multi-span beam-type structure supported and/or connected by
resilient joints with damping. To this end, an exact dynamic matrix for
a Timoshenko beam element is derived by means of the spatial domain Laplace
transform. A generalized modal analysis method is also proposed and applied to
the derivation of frequency response and time response formulas for general beam
structures. Three examples are provided for validating and/or illustrating the
proposed method. In the "rst numerical example, the proposed method is
compared with FEM. The second example deals with a three-stepped beam
structure supported by joints with damping property. In the "nal example,
a dynamic analysis of a multi-span beam under moving load is demonstrated. The
numerical study proves that the proposed method is useful for the dynamic analysis
of multi-span beam-type structures.
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1. INTRODUCTION

Exact solutions for distributed-parameter systems have attracted much attention
from many researchers due to the fact that the dynamic analysis of
a distributed-parameter system provides physical insight into the system [1}6].
Quite often, there is a need of exact and closed-form solutions for
distributed-parameter systems. For example, the dynamic analysis of a multi-span
beam under moving loads [6] is straightforward, if exact or closed-form solutions
for the distributed parameter systems are available. So far, however, it has not been
easy enough to obtain exact or closed-form solutions for non-uniform, multi-span
beam systems with damping.

There have been several approaches to gain exact or closed-form solutions for
general distributed-parameter beam systems. Yang et al. [7, 8] presented an
attractive method to obtain exact and closed-form solutions for one-dimensional
distributed-parameter systems by using the distributed transfer function synthesis
technique. However, the implementation of the method seems not easy enough
because of the di$culty in handling distributed transfer function matrices that
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should be integrated over the length of the beam element. Several researchers who
were interested in the dynamic behaviour of beams under moving loads have
attempted to attain the exact solutions of beam-type structures [6, 9, 10]. These
studies are mostly concerned with the dynamic-sti!ness-based method, which
con"nes itself to undamped systems. The exact solutions for multi-span beams
supported or connected by joints with damping have seldom been discussed. It is
believed to be still desirable to develop a more systematic method for attaining
exact or closed-form solutions of distributed-parameter beam systems involved
with damped joints.

The present paper deals with a new modelling and modal analysis method for
multi-span beam structures supported or connected by joints with damping. First
of all, a comprehensive modelling procedure to obtain an exact dynamic matrix for
a uniform Timoshenko beam element is presented. A spatial state equation for
a Timoshenko beam model, after applying Laplace transformation with respect to
time, is used for developing the exact dynamic matrix. The state equation is Laplace
transformed once more with respect to the spatial co-ordinate. Along with
resolving the inverse matrix formula, inverse Laplace transformation for the
resulting equation, with respect to the spatial co-ordinate, leads to a kind of exact
transfer matrix between the boundary values at one end and the values at an
in-between point of a uniform beam element. Substitution of the other boundary
values for the beam element into the resulting equation and rearrangement of the
variables yields an element dynamic matrix, which can be thought of as an exact
dynamic matrix for a uniform Timoshenko beam element. Lumped inertia and
joint elements with sti!ness and damping are also modelled in the Laplace domain.
With the element matrices derived, an actual system can be assembled in the same
manner as the "nite element method (FEM).

In this paper, a generalized modal analysis method is developed to easily deal
with the exact system dynamic matrix that includes transcedental functions of the
Laplace variable. Subsequently, any dynamic analysis can be readily accomplished
with the help of the modal decomposition method. The most important advantage
of the proposed method is that it can deliver exact and closed-form solutions for
multi-span, distributed-parameter beam structures. A great reduction for the
system matrix size is also expected due to the fact that a uniform beam segment,
regardless of the length, can be modelled by a single element. In addition, changing
parameters for any uniform beam section can be easily accomplished through the
proposed method, di!erent from FEM, which requires re-meshing to adjust the
parameters. It is believed that the modelling procedure presented in this paper can
also be applied to similar dynamic analysis concerned with distributed-parameter
systems [11].

In order to validate the proposed method, three numerical examples are
presented. A simple, single-span beam is considered as the "rst numerical example,
in which eigenvalues by the proposed method for two extreme boundary conditions
are compared with those from analytical results available. Then, frequency
response functions (FRFs) as well as eigenvalues for general boundary conditions
are also compared with those from FEM. Another example of application for
a multi-span beam supported by resilient joints with damping is also presented. In
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the "nal example, a multi-span beam under a moving load is analysed as a rigorous
application of the proposed method. The numerical study shows that the proposed
method is very useful for the dynamic analysis of general distributed-parameter
beam structures involved with lumped elements.

2. MODELLING

2.1. MODELLING OF TIMOSHENKO BEAM ELEMENT

The equations of motion for the Timoshenko beam, which contains shear
deformation and rotary inertia, can be written in a spatial state equation form as
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where u and / are the transverse and angular displacements of the beam and F and
M are the corresponding force and moment respectively. o, G and E are the density,
shear modulus and Young's modulus respectively. A and I

d
are the area and the

diametral moment of inertia respectively, and k is the shape factor that is dependent
on the cross-sectional shape.

Laplace transformation of equation (1) with respect to time, with zero initial
conditions, leads to
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Here, the asterisk represents the Laplace transform of the corresponding state
variable, s being the Laplace variable for time. Equation (2) can be rewritten, in
a simple matrix form, as

LW (x, s)
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"B(s)W (x, s), (3)
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where
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Laplace transformation of equation (3) for the spatial co-ordinate x, with
consideration of boundary values at x"0, may yield

WI (j, s)"[jI!B]~1W (0, s). (4)

Here, j is the Laplace variable for the spatial co-ordinate and WI (j, s) represents the
spatial Laplace transform for W (x, j). One can resolve [jI!B]~1 in equation (4)
as
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The inverse Laplace transformation of equation (4) for x gives the following:
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Figure 1. Sign conventions for the beam element.
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Hereafter, a uniform beam as shown in Figure 1 is considered to derive an exact
dynamic matrix for a uniform beam element. The sign conventions for the
displacements at x"0, m and l are also indicated in Figure 1. Substitution of the
forces and displacements at x"0 and m into equation (5) and rearrangement of the
variables in equation (5) yields
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Note here that the partitioned matrices, D
ik
(m), i, k"1, 2, are 2]2 and
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(m ). By substituting l for m, one can have the following equation:
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where De(l ) is equivalent to an exact dynamic matrix of an element in the s domain.

2.2. MODELLING OF LUMPED INERTIA ELEMENT

The equations of motion for a concentrated inertia element can be written as

mcuK"F, J c/G"M, (9)

where mc and J c denote the mass and the mass moment of inertia respectively.
Applying Laplace transformation to equations (9) provides the following equation
of motion, in the s domain, for the concentrated inertia element:
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2.3. MODELLING OF SUPPORTING/CONNECTING ELEMENTS

There are two kinds of joints that are essential for beam structures: connecting
and supporting joints. The equation of motion for a supporting joint element can
be written as

F"ctuR #k tu,
(11)

M"cr/0 #k r/,
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where c and k are the damping and sti!ness coe$cients respectively, and the
superscripts t and r represent &&transverse'' and &&rotational'' respectively. On the
other hand, the equation of motion for a connecting joint element can be written as
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where the subscripts i and j denote two connecting nodal points. Taking Laplace
transformation for equations (11) and (12),
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2.4. ASSEMBLING PROCEDURE FOR THE GLOBAL SYSTEM DYNAMIC MATRIX

The assembling procedure for the global system dynamic matrix can be
accomplished in the same manner as FEM. The "rst step is to decompose the entire
structure into uniform, distributed parameter beam elements, and lumped inertia
and joint elements. The next step is to make an element dynamic matrix for each of
the beam elements and lumped elements with equations given in the previous
sections. The "nal step is to assemble the element dynamic matrices in the same
manner that the global matrices are constructed in FEM. This assembling
procedure may result in the following system matrix equation:

F*(s)"D(s)q* (s), (15)

where q* and F* are the Laplace transforms of the global displacement and force
vectors.

From equation (15), the transfer function and frequency response function
matrices can be written as

H(s)"D~1 (s) (16)

and

H ( ju)"D~1(s) D
s/+u (17)

Exact transfer function and frequency response function matrices can be obtained
through direct computation of equations (16) and (17). However, the direct
computational method requires repetitive inversion of complex matrices, the size of
which tends to be larger in the case of complicated structures. The following section
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presents a generalized modal analysis scheme, which can provide a response
formula based on modal summation.

3. GENERALIZED MODAL ANALYSIS FOR GENERAL BEAM STRUCTURE

Since the system dynamic matrix contains transcendental functions,
conventional modal analysis schemes are not appropriate. A generalized modal
analysis method will be presented in this section to make the dynamic analysis
straightforward.

3.1. EIGENVALUE AND EIGENVECTOR

The eigenvalue problem associated with equation (15) is written as

D(s) q* (s)"0. (18)

Thus, the eigenvalues associated with equation (15) can be attained from the
non-trivial solution condition, i.e.,

detMD(s)N"0. (19)

Equation (19), unlike conventional eigenvalue problems, necessitates a special
algorithm for solving non-linear equations. In this paper, a modi"ed bisection
method is adopted which is suitable for general complex equations. It is obvious
that the number of eigenvalues is in"nite because D(s) contains transcendental
functions. The corresponding eigenvectors can be readily obtained by using
equation (18), once equation (19) is solved. The eigenvalues and the corresponding
eigenvectors satisfy the following lemma, an extended version from a matrix
polynomial theorem [12].

Lemma 1. For all, distinct eigenvalues, s
i
, i"1, 2,2,R, from equation (18), the

corresponding eigenvectors, q
i
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such as

qt
i
MD(s

i
)!D(s

k
)Nq

k
"0, iOk, i, k"1, 2,2,R. (20)

The eigenvectors can conveniently be normalized so as to satisfy
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It should be noted here that the vector set, q
i
, i"1, 2,2 ,R, is linearly

dependent. Analytical derivatives for element matrices are required for making use
of equation (21) in eigenvector normalization.

3.2. MODAL DECOMPOSITION

Since the system dynamic matrix can be expressed as a matrix polynomial of
in"nite order by using Taylor's series expansion, the inverse of system dynamic



MODAL ANALYSIS OF DISTRIBUTED PARAMETER BEAM SYSTEM 795
matrix can be written by a series of partial fractions in the same way as the inverse
of a matrix polynomial [12].

Lemma 2. Provided s
i
, i"1, 2,2,R, are all distinct and the corresponding

eigenvectors are normalized by equation (21), the inverse of system dynamic matrix (or
transfer function matrix) can be expressed as an in,nite series of partial fractions, i.e.,
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From Lemma 2, it is easy to show that, if the system is stable, the frequency
response function matrix can also be written simply as
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On the other hand, since the exact system dynamic matrix includes Laplace
variable s in itself, it is impossible to directly calculate time domain responses.
However, inverse Laplace transformation for the transfer matrix can yield the
impulse response function matrix as
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Therefore, the time response when a general force is applied to the system can be
obtained by means of the convolution integral, i.e.,

q(t)"P
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G(t!q)F (q)dq. (25)

3.3. REPRESENTATION OF RESPONSE AT AN INTERIOR POINT OF BEAM ELEMENT

It is interesting to know that a "nite matrix can represent
a distributed-parameter system without causing any error. However, additional
formulae are required to elicit full solutions for a distributed-parameter system.
Once the responses at nodal points are computed, the responses at interior points
between two nodal points can be obtained from the relation as

G
u* (m)
/*(m )H"D~1

12
(m) [D

11
(l )!D

11
(m) D

12
(l)] G

u*
1

/*
1

u*
2

/*
2
H . (26)

It is easy to obtain responses at an in-between point of interest by using equation
(26) together with equations (22)}(24).
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4. NUMERICAL EXAMPLES

Three examples are provided here to validate the proposed method. In the "rst
example, a simple beam is taken to compare the proposed method with existing
methods. In the second example, a modal analysis procedure is demonstrated by
using a three-stepped beam supported by two resilient joints. The "nal example
illustrates the proposed method with a multi-span beam under a moving load.

4.1. NUMERICAL EXAMPLE 1

The numerical model, which is composed of a uniform beam and two identical
supporting joints at both ends of the beam is shown in Figure 2. The detailed
speci"cations of the beam and joints are given in Table 1. The shape factor formula
is adopted from reference [13]. To show the exactness of the proposed method,
natural frequencies are examined for the beam in the absence of joints, but under
hinged}hinged and free}free boundary conditions. In Table 2, the natural
frequencies obtained by the proposed method are compared with those by
analytical formulas available in reference [13]. It can be seen that the natural
frequencies obtained by the proposed method are identical to those obtained by
analytical formulas.
TABLE 1

Speci,cations of numerical model 1

Elements Properties Data

Beam Length (m) 1)0
Width (cm) 2)5
Depth (cm) 2)5
Young's modulus (GN/m2) 200
Shear modulus (GN/m2) 80
Poisson's ratio l 0)3
Shape factor i 10(1#l)/(12#11l)
Density (kg/m3) 8000

Supporting joints Sti!ness (MN/m) 2
(2 identical) Damping (Ns/m) 20

Figure 2. Numerical model 1.



TABLE 2

Comparison of natural frequencies from analytical formulas in reference [13] and the
proposed method for the uniform beam under hinged}hinged and free}free boundary

conditions

Natural frequency (u
n
), rad/s

Hinged}hinged Free}free*
Mode Analytical Proposed method Analytical Proposed method
No. formulas formulat

1 3)55778498e#002 3)55778498e#002 8)05532939e#002 8)05532939e#002
2 1)41882448e#003 1)41882448e#003 2)21142738e#003 2)21142738e#003
3 3)17650875e#003 3)17650875e#003 4)30966485e#003 4)30966485e#003
4 5)60854995e#003 5)60854995e#003 7)06898477e#003 7)06898477e#003
5 8)68806614e#003 8)68806614e#003 1)04602176e#004 1)04602176e#004

*Rigid body modes (0 rad/s) are excluded.
s Hinged}hinged [13]:
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Here r
y
is the radius of gyration of the beam and o6 "oA.

The proposed method is compared with the FEM, which also includes rotary
inertia and shear deformation e!ect. Only one element is taken to model the beam
in the proposed method, while the number of elements is varied in the FEM to
demonstrate the di!erence. For increasing the number of elements, new nodes are
generated without relocating the previous nodes, in order to ensure the monotonic
convergence of eigenvalues with the number of elements. In Figure 3, FRFs
obtained by the proposed method are compared with those by the FEM. The
peak frequencies of FRFs by the FEM approach those by the proposed method, as
the number of elements is increased. Eigenvalues, computed both from the
proposed method and the FEM, are compared as well in Table 3. The eigenvalues
obtained by the FEM also converge to those by the proposed method. These results
imply that the proposed method provides exact solutions. Therefore, it is shown



Figure 3. Comparison of FRFs computed by FEM and the proposed method: excited and
measured at the left end of the beam. (a) wide range of frequency; (b) zoomed around the second mode.
** proposed method; - - - - - FEM 2 element; ) ) ) ) ) FEM 4 element; . - . - . - . - FEM 16 element.

798 S.-W. HONG AND J.-W. KIM
that a single exact element matrix proposed here can model uniform beam without
causing any error. On the other hand, it is observed in Table 3 that higher natural
frequencies from the FEM have larger errors than lower natural frequencies. The
reason is believed to be that constraints tend to increase the system sti!ness and,
conceptually, discretization with fewer degrees of freedom implies imposing more
constraints on the system [14].



TABLE 3

Comparison of eigenvalues from FEM and the proposed method for numerical model 1.
Real part of eigenvalue/imaginary part of eigenvalue (eigenvalue j

k
"p

k
#ju

k
, rad/s)

Mode FEM FEM FEM Proposed method
No. 2 elements 4 elements 16 elements 1 element

1 !6)7545e!002 !6)6720e!002 !6)6652e!002 !6)6651e!002
#j3)3568e#002 #j3)3453e#002 #j3)3444e#002 #j3)3444e#002

2 !3)5023e#000 !2)7644e#000 !2)7331e#000 !2)7327e#000
#j1)1683e#003 #j1)1111e#003 #j1)1079e#003 #j1)1079e#003

3 !1)4203e#001 !1)2563e#001 !1)2138e#001 !1)2133e#001
#j1)9860e#003 #j1)9429e#003 #j1)9273e#003 #j1)9271e#003

4 !2)2424e#001 !2)1488e#001 !2)0125e#001 !2)0106e#001
#j3)2481e#003 #j2)9958e#003 #j2)9549e#003 #j2)9542e#003

5 !3)7002e#001 !2)0213e#001 !2)0182e#001 !2)0135e#001
#j6)8026e#003 #j4)7456e#003 #j4)7139e#003 #j4)7111e#003

Figure 4. Numerical model 2.
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4.2. NUMERICAL EXAMPLE 2

In this example, a three-stepped beam with a lumped mass is considered to show
the modal analysis procedure by the proposed method. The schematic drawing for
the beam considered in this example is shown in Figure 4. The detailed
speci"cations of the beam structure are given in Table 4. Since the beam has three
di!erent sections and a lumped mass in the middle segment, four elements are used
for modelling, as shown in Figure 4. In Table 5, eigenvalues computed from the
proposed method are compared with those from the FEM by increasing the
number of elements. It is clearly observed that the eigenvalues from the FEM
converge to those from the proposed method as the number of elements is
increased. The "rst three mode shapes with neglecting damping in supporting joints
are presented in Figure 5. Unlike other discretization methods, the present method
gives continuous-mode shape functions. The essence of the modal analysis is to be
able to compute frequency and time response by means of modal summation.
Typical frequency response functions by the modal expansion method and the



TABLE 4

Structural properties for numerical model 2

Elements Properties Data

Beam Young's modulus (GN/m2) 200
Shear modulus (GN/m2) 80
Poisson's ratio l 0)3
Shape factor i 10(1#l)/(12#11l)
Density (kg/m3) 8000

Concentrated mass Mass (kg) 20
Mass moment of inertia (kg m2) 3)333]10~4

Supporting joints Sti!ness (MN/m) 2
(2 identical) Damping (Ns/m) 10
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direct computational method are compared in Figure 6. Seven modes are included
in the modal expansion method. Figure 6 ascertains that the modal expansion
method gives accurate results, as the direct method does. Figure 7 shows a typical
impulse response function computed by equation (24).

4.3. NUMERICAL EXAMPLE 3

The present example deals with a three-span beam structure under a moving
load, in order to show the applicability of the proposed method to general beam
systems. This example is adopted from reference [6] except the Timoshenko beam
model is substituted in place of the Euler}Bernoulli beam model. Figure 8 shows
a schematic diagram for the system, and the speci"cations are described in Table 6.
In this case, one element per span is taken to model the multi-span beam system.
The "rst three eigenvalues and the corresponding shape functions are given in
Figure 9. A constant moving load with constant speed, l, can be modelled as

f (x, t)"f
0
d (x!lt). (27)

Then the modal force for the ith mode can be written as

p
i
(t)"P

L

0

u
i
(x) f (x, t) dx"u

i
(lt) f

0
(28)

where u
i
(x) is the ith mode shape function synthesized with nodal eigenvectors and

equation (26). In this case, the summation for the ith modal response and the
conjugate modal response is given by

r
i
(t)"2ReG P

t

0

p
i
(q)esi (t~q)dqH . (29)
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Figure 5. Mode shapes of "rst three modes for numerical model 2: (a) 1st mode; (b) 2nd mode;
(c) 3rd mode.

Figure 6. Comparison of FRFs computed by the modal summation and the direct computational
method: excited and measured at the 1st and 3rd nodes of the system, respectively, for numerical
model 2. ** direct inversion; - - - - mode synthesis.
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Figure 7. Impulse response function by the modal summation: excited and measured at the 1st and
3rd nodes of the system, respectively, for numerical model 2.

Figure 8. Numerical model 3 [6].
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Consequently, the time response can be written as

u (x, t)"
=
+
i/1

u
i
(x) r

i
(t). (30)

Figure 10 shows time responses at the center of each beam (indicated in Figure 8 by
A, B and C) under a moving load with v"35)57 m/s: 10 modes are used in
computation. It can be seen that the curves in Figure 10 are in good agreement with
those in reference [6].



TABLE 6
Structural properties for numerical model 3

Properties Data

Length (m) 60
Sectional area A (m2) 0)51]10~2
Young's modulus E (GN/m2) 104)8
Shear modulus G (GN/m2) 40)3
Poisson's ratio l 0)3
Shape factor i 10(1#l)/(12#11l)
Rigidity EI (Nm2) 1)96]109
Mass per unit length m

l
(kg/m) 1000

Force f
o

(N) 9)48]103

Figure 9. Mode shapes of "rst three modes for numerical model 3 (u
1
"6)190 Hz, u

2
"7)550 Hz,

u
3
"11)882 Hz). ** 1st mode; . - . - . - 2nd mode; - - - - - - 3rd mode.
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5. CONCLUDING REMARKS

In this study, an exact dynamic matrix in the Laplace domain for a Timoshenko
beam element is derived. The importance of the derivation procedure is in applying
Laplace transformation to a spatial state equation of the Timoshenko beam model,
twice with regard to time and also spatial co-ordinate. The application of inverse
Laplace transformation of the resulting equation with respect to the spatial
co-ordinate and the application of the boundary values will come up with the exact
dynamic matrix for a uniform Timoshenko beam element. The exact dynamic



Figure 10. Dynamic response at the center of each span of the beam structure due to a moving load:
**, reference [6]-A; - ) - ) -, reference [6]-B; - - - - -, reference [6]-C m, proposed-A; f, proposed-B; m,

proposed-C.
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matrix for the beam element, together with the other two element matrices for
lumped inertia and joint elements, is used to make the global system dynamic
matrix of beam structures. A generalized modal analysis procedures is proposed to
make the system analysis straightforward. Three numerical examples are provided
to show the adequacy and applicability of the proposed method.

The proposed method provides an exact model with "nite matrix size and
a modal analysis method for multi-span, distributed-parameter beam systems
supported and/or connected by resilient joints with damping. In addition, the
matrix size of the model is anticipated to be small due to the fact that any uniform
segment of the beam can be modelled by a beam element without causing any error.
The proposed method also allows dynamic analysis of the system without any
re-meshing process, even in the case when beam dimensions are changed. This
feature is believed to be useful for design and reanalysis of beam structures.
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